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The general principles of the construction of a theory of the viscoelasticity of polymer melts. 
solutions and blends are considered from the standpoint of a structural approach. The main 
problems are outlined, the difference in the solution orwhich is responsible for numerous currently 
existing structural theories. Methods are discussed, by means of which i t  is possible t o  take into 
account the effect of topological restraints on the dynamics of macromolecules which are imposed 
by the polymer environment. The self-consistent concept of microviscoelasticity is considered in 
detail. 

1. INTRODUCTION 

The key problem in polymer rheology is the construction of a consistent 
theory of the viscoelasticity of concentrated solutions and melts of linear 
polymers on the basis of certain structural concepts that reflect the specificity 
of the structure of these systems. 

The existing structural theories of the dynamic properties of polymers rely 
on the theory of the dynamic properties of a single polymer molecule. The 
relaxation properties of flexible-chain polymers are successfully described by 
means of the subchain model which was first proposed by Kargin and 
Slonimsky ' and later developed by Rouse.2 

The main difficulty encountered in constructing such a theory lies in the 
consideration of intermolecular interaction. The dynamic effect of inter- 
molecular interaction can be described in an effective way. Indeed, in  

?This paper was presented to the Xlth All-Union Symposium on Polymer Rheology held in 
May, 1980,in Suzdal (U.S.S.R.). 
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116 V. S. VOLKOV 

FIGURE I The subchain model 

accordance with the concepts of the mechanics of constrained systems, one can 
pass over from the consideration of the motion of an assembly of coupled 
chains, of which a real polymer is composed, to the analysis of the motion of an 
equivalent system of free chains. In such an approach the equations of motion 
of individual macromolecules are set up with the dynamic effccl of the 
surroundings being taken into account by introducing additional forces, 
whose action is equivalent to the action ofa real environment. These forces arc 
unknown and therefore additional assumptions are required for a morc 
detailed determination of macromolecular motion. The above scheme of 
treatment is general for all the existing structural theories of the viscoelasticity 
of molten polymers and concentrated polymer solutions. The difference 
between the theories is in the manner in which the main problem in such a 
treatment- the modelling of the effect of the surroundings on macromolecular 
motion-is solved. 

An  attempt to take into account this effect in a simple manner, by 
introducing a viscous liquid instead of surrounding macromolecules, has 
proved successful only for polymers having moderate molecular masses. For 
high polymers the concept of a “purely viscous” environment which was first 
proposed by Kargin and Slonimsky’ is found to be insufficient. 

I t  was therefore necessary to refine the theory. An important stage in the 
subsequent development of the theory was the publication of the works by 
Bueche3 and Ferry, Landel and Wi l l i am~,~  which laid the foundation for the 
so-called entanglement concept. According to the main assumption of this 
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VISCOELASTICITY OF LINEAR POLYMERS 117 

concept, the interaction ofmacromolecules with their immediate surroundings 
is localized at  isolated, rather sparsely spaced points-at points of entangle- 
ment with other macromolecules. I t  is assumed that the entanglement effect 
may be taken into consideration with the aid of an increased value of the 
friction factor at points ofcontact between the entangled macromolecules. The 
main result of the investigations carried out by these authors is that they 
explain the appearance of a plateau on the frequency dependence of the elastic 
modulus G’(w), which is associated with the resolution of the relaxation 
spectrum of a high polymer into two groups of relaxation times differing 
strongly in magnitude. The predicted distribution of long relaxation times 
does not, however, correspond to the experimentally observed distribution. It 
has been shown5-’ that this shortcoming cannot be eliminated through the 
possible variations of the friction factors of slow beads which reflect the 
nonequivalence of entanglements. Figure 2 shows the characteristic frequency 
dependences of the storage modulus, G’(o), and the loss modulus, G”(w), which 
are obtained in this case and which reflect the distribution of the relaxation 
times of the system. As can be seen, in the frequency region corresponding to 
the appearance of a plateau on the curve of G‘, where the distribution of high 
relaxation times is manifested, a wedge-type shift to the plateau region is 
observed in contrast lo experiment. 

I t  was found later that this is associated with the neglect of an important 
circumstance-the elastic effect of entanglements on the motion of the 
entangled polymer chain. The elastic forces operating at points where 
polymeric chains are entangled with surrounding molecules were first taken 
into account by Graessley.’ This was done with the aid of a model, in which all 
large beads are bound with each other through the centre ofgravity by elastic 
springs. The most consistent model in this respect has recently been advanced 
by Shen and his  colleague^,^^^ who introduced additional extra elastic 
constraints between various pairs of slow beads. 

l o 9  w 
FIGURE 2 A comparison of thecharacteristic frequency dependences of the components orthe 
dynamic modulus calculated for the model ornonequivalent entanglements (the dashed line) with 
experiment (the full line). 
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118 V. S. VOLKOV 

Despite the attractiveness of the entanglement concept, which takes account 
of the polymeric nature of the medium surrounding the macromolecule, the 
key proposition of this concept concerning the localized character of the 
dynamic interaction of the polymer macromolecule with its surroundings is far 
from obvious. Attempts have therefore been made lately to build up a theory 
by imposing kinematic restraints on the motion of macromolecules. Mention 
should first of all be made of the model of constraints in the form of a tube, 
which has been intensively developed in recent years,'" l 3  This model, 
however, leads to a wider, wedge-type distribution of high relaxation times 
than that observed in  experiment^.'^ 

2. THE CONCEPT OF MICROVISCOELASTICITY 

The dynamic interaction of macromolecules with the polymer environment is 
described more consistently by the concept of microviscoelasticity.'" I *  

Taking into account that single molecules exhibit relaxation properties, it is 
natural to presume that their environment, which is composed of macromole- 
cules of the same species, also displays relaxation properties, i.e. is viscoelastic. 
In other words, i t  is assumed that the polymer macromolecule is moving 
among macromolecules of the same species as if in a certain viscoelastic liquid 
characterized by the nature of the polymer. According to the concept of 
microviscoelasticity, the fundamental equations for the dynamics of a single 
macromolecule may be written as follows : 

d 
dt zg = u4 

Here za and ti" are, respectively, the radius-vector and the velocity of the a-th 
particle of the chain which simulates the macromolecule (see Figure I ) .  

The first term on the right-hand side of the second equation in ( I )  describes 
the viscoclastic resistance experienced by the macrornoleculc moving in its 
polymer environment. 

The sccond term represents the viscoelastic internal friction, i.e. the kinetic 
rigidity of the macromolecule caused by both the intramolecular and 
intermolecular interactions. 

Thc third term describes the elastic force acting on the chain particles from 
the side of the nearest neighbours. 
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VISCOELASTICITY OF LINEAR POLYMERS 119 

The Brownian motion of the macromolecule is taken into account with the 
aid of a Gaussian fluctuating force CD" with an averaged value equal to zero. 

Thus, the problem of the viscoelasticity of molten polymers and con- 
centrated polymer solutions reduces to the description of a non-Markovian 
stochastic process defined by a system of generalized Langevin equations. 

The Langevin equations in the form indicated includes the inertial effects of 
the particles and the medium and the effects of viscoelasticity, hydrodynamic 
interactions, internal viscosity and long-range interactions. 

The rheological (constitutive) equations of the systems considered are 
constructed directly from the equations of motion for single macromolecules 
without recourse to the differential equation for the distribution function 
usually employed in the traditional method. The state of the medium is 
characterized by the velocity of motion v(x, t )  and the densities p(x, t) of the 
volume elements, into which the assembly of particles of all the chains are split 
when the continuum approximation is used. They are defined in terms of the 
coordinates and the velocities of the particles in an ordinary way : 

Here x is the radius-vector of the element which is considered to be a point in 
the continuum : u and v are, respectively, the numbers of macromolecules and 
particles in them. The angular brackets signify ensemble averaging of 
realizations of random forces acting on particles. The hydrodynamic equa- 
tions and the stress tensor of the medium are determined by means of 
differentiation of Eq. (2) with respect to time with subsequent use of the 
equations of motion of the particles. With suitable detailing of the functions 
involved these equations are found to be applicable to polymer solutions, 
melts and blends. In the normal coordinates p:  = R[,,z:, which diagonalize thc 
force matrices contained in the equations for the dynamics of macromolecules, 
the stress tensor has the form 

Ork = - p d i k - f n T  2~la,(py(f)pl(f))--ii,, 

Here n is the number of macromolecules in unit volume; T is the temperature 
in energy units; SI,, and q , ( s )  are the eigenvalues of the force matrices A and G :  
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120 V. S. VOLKOV 

wkr is the antisymmetric part of the velocity-gradient tensor for the system. 
The law of variation of the statistical characteristics of macromolecular 
motion contained in the stress tensor given by the formal solution of the 
system of equations (1). 

The dynamic modulus and relaxation times of the media considered are 
determined by using their expressions for the stress tensor. For linear polymers 
and their concentrated solutions it is assumed that the viscoelastic charac- 
teristics (microviscoelasticity) of the medium that surrounds the given 
macromolecule are determined by simple expressions for the external, b,[w], 
and internal, cp,[w], friction factors of the vth mode of the macromolecule : 

which depend on frequency, since the medium is viscoelastic. 2 is the relaxation 
time ofthe medium ; [ is a constant which has the meaning of the friction factor 
of the particle in a viscous liquid. The square brackets in Eq. (4) indicate a one- 

sided Fourier transform a [ o ]  = a(s)el"' ds ;  ,", and E ,  are the weight 

factors. This leads to the following expression for the dynamic modulus : 
J: 

where the following notations are used : 

( 2 :  - 2 / 2 ) ( t L -  2 / 2  - (2: - 2;))  

(TI - z:)(z; - z;) 
Biy = , i # e , i # m  

The dynamic modulus is defined by two sets of relaxation times 

Thc relaxation times 2:. are the solutions of the cubic equation: 

T ~ - U C ~ \ ; T ~ + U ; T - - I ;  = o (7)  
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VISCOELASTICITY OF LINEAR POLYMERS 

with the coefficients 

and are given by the following expressions : 

z:93 = a;/3+2 s i g n ( q v ) , / q 3  cos($ :) 

121 

Here the following notations are used : 

p v  = - ( ~ ; ) ~ / 3  +a;, 

qv = - 2 ( ~ ; / 3 ) ~  + a; a;/3 -a;, 

cos = qV/[2 * (sign qv * ( -  ~ " / 3 ) " ~ ) ~ ]  

The frequency dependence of the dimensionless dynamic modulus is de- 
termined by the following parameters of the model B,E,  and T;. The last 
parameter is the maximum relaxation time of the macromolecule in a purely 
viscous segmental liquid. The effect of the parameters rn and e, which are 
defined by Eq. (4), is insignificant. 

In order to detail the viscoelastic characteristics of the medium that 
surrounds the isolated polymer chain, a consistent co-ordination of relaxation 
times is introduced. Considering that each macromolecule is surrounded by 
macromolecules of the same species, it is required that the characteristic 
relaxation time coincide with the characteristic relaxation time of the 
environment : 

zmax = 7 

In other words, it is taken into account that the macromolecules and their 
environment relax in the same way. The self-consistent condition singles out a 
self-consistent solution from a set of possible solutions. A computer-assisted 
experiment has shown that it is precisely this solution that reflects most 
correctly the experimental situation. After the self-consistent test is carried out 
the dependence of the dimensionless dynamic modulus of the systems under 
consideration on the dimensionless frequency is determined by two para- 
meters only, B and x = z/2Bzi, whose values depend on the molecular mass 
and concentration of the polymer. The parameter B is a measure of the 
viscoelasticity of the environment around the macromolecule. The parameter 
x serves to compare the relaxation time of the macromolecular environment 
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122 V. S. VOLKOV 

with the characteristic relaxation time of the macromolecule in a viscous 
liquid, i.e. in a liquid with zero relaxation time. The values of B and x can be 
calculated by means of the formulas for the initial shear viscosity qo and the 
plateau modulus Gk which are predicted by theory : 

qo = 1.46nTBzl 

Gk = 0.12nTx-' (9) 

Proceeding from the dimensional analysis we can show that B and x are 
universal functions of the dimensionless parameter S and are independent of 
the chemical structure of polymers : 

-i 
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VISCOELASTICITY OF LINEAR POLYMERS 123 

polymers-the appearance of a point of inflection on the frequency depen- 
dence of G' in the frequency region that precede the appearance of the plateau. 
It should also be noted that there is observed a very sharp shift to the plateau 
on the theoretical curve of G', which is evidence of a very narrow distribution 
of long relaxation times for ideally monodispersed polymers. 

3. MICRO- AND MACROVISCOELASTICITY 

In connection with the establishment of the relationship between micro- 
viscoelasticity taken up by an isolated macromolecule and the observed 
macroviscoelasticity it becomes necessary to study the viscoelasticity of dilute 
blends of two polymers, A + B, with a limiting low content of the higher- 
molecular-mass component B, so that molecules of species B do not interact 
with each other. In this case, it will be natural to assume at  the outset that 
component A forms, for macromolecules of species B, a viscoelastic medium 
described by the storage and loss moduli of the original component A.  Then, 
on the basis of the formula derived earlier :I6 

(1 1) 
M A ( 4  . M,(w - 0') 

PaPY + M A ( W ' )  Pa/& + M,(w - w') 
X 

which relates the dimensionless dynamic moduli of a linear viscoelastic liquid 
of the general type M A  = G,/nT and of a dilute solution of a polymer in it, 
M = G/nT,  it is possible to determine the frequency dependence of the 
storage and loss moduli of dilute mixtures. Equation ( 1 1 )  contains the 
dimensionless concentration y,  which is connected with the intrinsic viscosity 
by the relation y = 6c[q ]  if it is assumed that the macromolecules are 
draining : pa = 

In a particular case where the medium is viscous, M A  = - iufjs, f j s  = qs/nT. 
From Eq. (1  1) we obtain an integral form of the storage and loss moduli of 
dilute solutions of polymers in a viscous Newtonian liquid : 

N i  
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124 V. S. VOLKOV 

Using a Fourier transform, it is easy to show that the formulas derived, (Eq. 
(12), reduce to the well-known Rouse formulas. 

4. CONCLUSION 

The main difficulty in the theory of the viscoelasticity of molten polymers and 
concentrated polymer solutions was to explain slow relaxation processes. The 
appearance of a plateau was ascribed to the mechanical entanglement network 
formed by labile junctions or entangled portions of the chain. From the 
analysis made here it follows that it is precisely the account taken of the 
viscoelasticity of the medium surrounding the macromolecules of con- 
centrated polymer systems that naturally leads to the experimentally observed 
distribution of long relaxation times. 
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